Flexible High-Dimensional Unsupervised Learning with Missing Data
نویسندگان
چکیده
منابع مشابه
High-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملUnsupervised Learning with Non-Ignorable Missing Data
In this paper we explore the topic of unsupervised learning in the presence of nonignorable missing data with an unknown missing data mechanism. We discuss several classes of missing data mechanisms for categorical data and develop learning and inference methods for two specific models. We present empirical results using synthetic data which show that these algorithms can recover both the unkno...
متن کاملLearning high-dimensional data
Observations from real-world problems are often highdimensional vectors, i.e. made up of many variables. Learning methods, including artificial neural networks, often have difficulties to handle a relatively small number of high-dimensional data. In this paper, we show how concepts gained from our intuition on 2and 3dimensional data can be misleading when used in high-dimensional settings. When...
متن کاملUnsupervised Learning with Permuted Data
We consider the problem of unsupervised learning from a matrix of data vectors where in each row the observed values are randomly permuted in an unknown fashion. Such problems arise naturally in areas such as computer vision and text modeling where measurements need not be in correspondence with the correct features. We provide a general theoretical characterization of the difficulty of “unscra...
متن کاملDEA with Missing Data: An Interval Data Assignment Approach
In the classical data envelopment analysis (DEA) models, inputs and outputs are assumed as known variables, and these models cannot deal with unknown amounts of variables directly. In recent years, there are few researches on handling missing data. This paper suggests a new interval based approach to apply missing data, which is the modified version of Kousmanen (2009) approach. First, the prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2020
ISSN: 0162-8828,2160-9292,1939-3539
DOI: 10.1109/tpami.2018.2885760